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b 

An analysis of a method for the numerical evaluation of the integral .[ f ( x )  dx is presented. The 
a 

method introduces a change of variable, x = x(q), with the property that d"x/dq" is zero at x = a, x = b 
for n = 0, 1, 2, ... N, where N is an integer to be chosen. The Euler-Maclaurin formula shows that the 
resulting integral in the variable q is ideally suited for numerical integration, using equally spaced 
points and equal weights in q-space. Examples are given for various integrals which occur in quan tum 
chemistry and applications to more than one dimension are discussed. 
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For the numerical integration of many dimensional integrals a change of 
variable to make zero various low order derivatives at the boundaries has been 
variously used. [See Boys and Rajagopal (1965), Boys and Handy (1969) and a 
special scheme by Sag and Szekeres (1964), where a device which makes all 
boundary derivatives equal to zero is used. The latter is similar to the To~ transfor- 
mation introduced below.] For an approximate estimate of the errors in 
transformations of such types, the most useful data appear to be the results for 
various one dimensional integrals. These do not appear to have been available 
and such a set is given here. Since these transformations are the simplest way of 
making various derivatives have zero values at the boundaries of the integration 
range, they will be referred to here as boundary derivative reductions. 

The type of transformations with which we are concerned is the simplest type 
of change of variable x(q) with 

1 1 A~ 1 
,f F(x) dx = .[ F(x(q)) ~q dq = .[ G(q) dq. (1) 
o o o 

It is always arranged that dx/dq varies as q" near q = 0 and ( 1 -  q)a near q = 1. 
Then the simplest numerical approximation to this with n + 1 equally spaced 

* This paper was presented during the session on numerical integration methods for molecules 
of the 1970 Q u a n t u m  Theory Conference in Nott ingham. It has been revised in the light of the 
interesting discussion which followed. 
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points (including the two limits) is 

n - 1  
Z 

i=1 
G(q i - i/n) + 0.5(G(0) + G(1)) 

1 n - 2  n - 4  
= ~ F(x) dx 12-(G(1)(1) - G(1)(O)) + ~ (G(3)(1) - G(3)(O)) 

o 
/,,/-6 

30240 (G(5)(1) - G(5)(0)) + 0(n- s). 

(2) 

The terms varying a s  n - 2 ,  rt - 4  etc. are the correction terms given by the Euler- 
Maclaurin formula [see Krylov (1962) or Whittaker and Robinson (1937)]. But 
these depend on the values of the odd derivatives at the boundary. If a + b > 1, 
where qb denotes the variation of F(x(q)) for small q, then the n -2 term vanishes; 
if further a + b > 3, then the n - 4  term vanishes and so on. In the transformations 
T 3 and T5 used below, we generally have residuals of n -4 and n -6 respectively. 
The integrals without transformation generally give n -2 errors and these are 
given for comparison. 

It is considered that for the evaluation of many dimensional integrals, the use 
of such transformations for each dimension separately is probably the most 
desirable first step for most integrals. In such a case it is desirable to be able to 
estimate the value of the errors to be expected. Such errors for n = 6 to about  
n = 12 in the tables provide an approximate means of doing this and seem to be 
the only record of suitable quantities for this. 

The notations Tp with p giving the lowest power of q a re  used in the tables 
for the following transformations with T1 thus denoting no transformation: 

Tl" x =  q 
1 

T 2" x = a2 S q(1 - q) dx = 3q 2 - 2q 3 
0 
1 (3) 

Tp: X=ap S qV- l (1 -q ) l ' - i  dq 
0 

T~o" x = [exp( - q - 1)] [exp( - q - 1) + exp( - (1 - q)- 1)] -1 .  

The constants ap are chosen to make x cover the range 0 to 1 as q covers the same 
range. The numerical integration for a given F(x) is then performed through 
Eq. (1) and through 

G(q) dq y" G(i/n) + 0.5(G(0) + G(1)). (4) 
i=1 

The fractional errors ~ obtained by these transformations are given for 
different n, all multiplied by 105, so that 1. denotes a normal high accuracy. In 
each table a quantity (error x (nV)) is recorded as ( )z This is the value of C if the 
error varied as Cn -v. Hence the constancy of ()v in a column denotes a close 
approximation to an n -p law. The fractional error results are stated to 0.00001 
but there may be errors of about 0.00002 and so any case less than 0.00005 has 
been given as 0. The accurate standard of reference was taken from n = 100, T~, 
and so this has no entry. 
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T a b l e  1. F r a c t i o n a l  e r r o r s  x l 0  s for  F = e x p ( - 4 ( x -  0.5) 2) 
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n T1 r3 T5 T~o 

6 -915 . 6  (-0.3296)2 -38 .46  (-0.4985)4 311.4 (145.3)6 - 196.3 
8 -514 . 2  (-0.3291)2 -13 .59  ( -0 .5566)4 15.42 (40.42)6 -116 .7  

10 -328 .8  (-0.3288)2 - 5.368 (-0.5368)4 1.345 (13.45)6 - 3.632 
12 -228 .3  (-0.3287)2 - 2.526 (-0 .5239)4 0.3356 (10.02)6 12.10 
16 -128 .3  (-0.3286)2 - 0.7790 (-0 .5106)4 0.05830 (9,.781)6 0.5658 
20 - 82.13 (-0.3285)2 - 0.3151 (-0 .5042)4 0.01531 (9.799)6 - 0.4428 
40 - 20.52 (-0.3284)2 - 0 .01938(-0.4962)4 0.00021 (8.599)6 - 0.00075 
60 - 9.122(-0.3284)2 - 0.00383 (-0 .4965)4 0 0 

100 - 3.284(-0.3284)2 - 0.00049 (-0 .4959)4 0 

T a b l e  2. F r a c t i o n a l  e r r o r s  x 10 s for F = exp(x - 0.5) 2 

n T 1 T 3 T5 T~ 

6 543.6 (0.1957)2 -85 .06  ( -1 .102)4  54.75 (25.54)6 -853 .5  
8 306.2 (0.1959)2 -27 .74  ( -1 .136)4 8.781 (23.02)6 -271 .7  

10 196.1 (0.1961)2 -11 .51  ( -1 .151)4 2.337 (23.37)6 0.9609 
12 136.2 (0.1962)2 - 5.589 ( -1 .159)4 0.7845 (23.42)6 28.65 
16 76.66 (0.1962)2 - 1.781 ( -1 .167)4 0.1399 (23.48)6 1.304 
20 49.07 (0.1963)2 - 0.7319 ( -  1.171)4 0.03671(23.49)6 - 1.046 
40 12.27 (0.1963)2 - 0.04597 ( -  1.177)4 0.00558 (22.85)6 - 0.00176 
60 5.454 (0.1963)2 - 0.00909 ( -  1.179)4 0 0 

100 1.963 (0.1963)2 - 0.00117 ( -  1.177)4 0 

T a b l e  3. F r a c t i o n a l  e r r o r s  x l 0  s for  F = 0 . 5  c o s h ( 2 x -  1) 

n r 1 T3 T 5 T~ 

6 942.2 (0.3327)2 
8 520.3 (0.3329)2 

10 333.1 (0.3331) 2 
12 231.4 (0.3332)2 
16 130.2 (0.3332)2 
20 83.31 (0.3333)2 
40 20.83 (0.3333)2 
60 9.259 (0.3333)2 

100 3.333 (0.3333)2 

-91 .61  ( -  1.187)4 63.27 (29.51)6 1014.2 
- 30.33 ( - 1.242)4 9.834 (25.78)6 -- 301.3 
--12.67 (--1.267)4 2.607 (26.07)6 2.296 
- 6.177 ( -1 .281)4  0.8752 (26.13)6 31.88 
- 1.975 ( -1 .294)4  0.1560 (26,.18)6 1.447 
- 0.8133 ( -1 .301)4 0.04093(26.20)6 - 1.164 
- 0.05119(-1.311)4 0.00625(25.61)6 - 0.00196 
- 0.01013 ( -  1.314)4 0 0 
- 0.00132 ( -  1.315)4 0 

The transformation T~ is a special form introduced because it has all the 
boundary derivatives zero. It can be inferred non-rigorously by inspection of 
the simple Euler-Maclaurin formula that the errors would decrease more rapidly 
than any finite power of n-1.  This can also be shown by more complicated 
vigorous mathematical argument. It will be seen that the results for T~ in every 
table appear to be in agreement with this. 

The tables show how markedly improved are the results for T3 and Ts 
compared to T 1 in all normal cases (Tables 1-3) and how closely they follow 
Euler-Maclaurin predictions. A few exceptional functions are included and again 
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Table  4, F rac t iona l  errors  x 105 for F = sin(~zx) 

n rl T2 T3 T| 

6 -2295 .1  ( -0 .8262)2  112.6 (1.460)4 - 2 1 . 3 1  ( -  9.942)6 405.5 
8 - 1 2 8 8 . 4  ( -0 .8246)2  35.90 (1.471)4 - 4.144 ( -10 .86)6  - 1 0 . 4 1  

10 - 823.8 ( -0 .8238)2  14.74 (1.474)4 - 1.118 ( -11 .18)6  - 8.088 
12 - 571.8 ( -0 .8234)2  7.121 (1.476)4 - 0.3803 ( -11 .35)6  0.2640 
16 - 321.4 ( -0 .8230)z  2.256 (1.478)4 - 0.06873 ( -11 .53)6  0.04567 
20 - 205.7 ( -0 .8228)2  0.9244 (1.479)4 - 0 .01815( -11 .62)6  - 0.01048 
40 - 51.40 ( -  0.8225)2 0.05779 (1.480)4 - 0.00030 ( - 12.54)6 0 
60 - 22.84 ( -0 .8225)2  0.01141(1.478)4 0 0 

100 - 8,224 (--0,8225)2 0.00148 (1.481)4 0 

Table  5. F rac t iona l  errors  x 105 for F = e x p ( -  100(x - 0 ,5 )  2) 

n T 1 T 3 T 5 T~ 

6 5727.5 (2.016)2 76371.1 (989.8)4 131406.8 88076.3 
8 361.2 (2.312)2 3 3 7 1 7 . 0 ( 1 3 8 1 . 0 ) 4  73641.6 41723.3 

10 10.34 (0.1034)2 12746.7 (1274.6)4 39857.7 17265.9 
12 0.1344 (0.0002)2 4038.0 (837.3)4 19857.7 6006.6 
16 0 246.7 (161.6)4 3664.7 429.4 
20 0 8.384 (13.41)4 464.9 15.52 
40 0 0 0.00011 0 
60 0 0 0 0 

100 0 0 0 - -  

Table  6. F rac t iona l  errors  x 105 for F = (1 - x) z e x p ( -  (1 - x ) -  1) 

n T, T 3 T 5 T~o 

6 - 4 0 3 . 8  ( -1 .454)2  - 7 0 6 . 5  ( -9 .156 )4  - 2 8 1 3 . 0  ( -1312 .0 )6  - 2 8 7 8 . 0  
8 - 2 4 2 . 2  ( -1 .550)2  232.4 (9.522)4 - 404.2 ( -1059 .0 )6  - 760.1 

10 - 89.78 ( -0 .897)2  - 71.83 ( - 7 . 1 8 3 ) 4  288.4 (2884.0)6 - 178.5 
12 - 47.36 ( -0 .682)2  15.00 (3.112)4 - 64.12 ( -1915 .0 )6  18.25 
16 - 31.83 ( -0 .815)2  0.2368 (1.552)4 4.178 (700.8)6 - 9.824 
20 - 21.24 ( -0 .850)2  - 0.3258 ( -5 .257 )4  0.9393 (601.1)6 - 2.794 
40 - 5.209 ( -0 .833)2  - 0.01958 ( -4 .968 )4  0.00021 (8.583)6 - 0.00142 
60 - 2 .314( -0 .833)2  - 0.00387 ( -5 .018 )4  0 0 

100 0 0 0 - -  

they are markedly in accordance with expectations. For example (Table 4) since 
sin(rex) already behaves as x and 1 - x  at the boundaries the transformations 
Tz and T4 carry it to the same state as T 3 and T 5 in the ordinary case. 

In Table 5, exp( - 100(x - 0.5) 2) is a very peaked function, and it is clear that 
the transformations each make it more peaked. Clearly the integral will not be 
accurate until the peak is accurately integrated. 

In Table 7, the function F already has all derivatives zero at both ends, and 
thus the transformations do not improve the errors. 
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Table  7. F r ac t i ona l  errors  x 105 for F = e x p ( - x -  1 - ( 1  - x ) -  1) 

n T1 T3 

6 - 361.2 ( -  1.300)2 - 1688.7 
8 6.344 (406.0)2 107.8 

10 20.17 (0.2017)2 - 5.698 
12 4.436 (0.0638)2 7.623 
16 - 0 .7004( -0 .00179)2  0.2687 
20 - 0.0379 ( -0 .00015)2  0.04303 
40 0 0 
60 0 0 

100 0 

o0 

In Table 6, the integral is in fact .[ e -r dr, transformed by r = x ( 1 -  x) -1 to 
o 

bring its range to [0, 1]. Then though all derivatives are zero at x = 1 substantial 
improvement is still obtained, as would be expected, since the transformations 
reduce the derivatives at x = 0. 

It is of interest to note that the transformation Too gives results as accurate 
as the others from n--16 upwards, and at n = 40, is giving the best results, all 
results being in the region of round-off error. 

The small point that, since in the Eq. (4), in the practical applications 

0.5(G(0) + G(1)) = 0 (5) 

there are only ( n -  1) points of evaluation for n intervals, can become more im- 
portant in many dimensions where only (n-1)  M points are required. 

The advantages and simplicity of this procedure as a first step, possible for 
one dimensional, but very markedly for many dimensions, does not appear to 
have been widely appreciated. It appears quite possible that combinations of 
this procedure with diophantine or similar systems of points [Haselgrove (1961), 
Conroy (1967)], might be one of the most effective methods for difficult many 
dimensional integrals. The work of Sag and Szekeres could probably be regarded 
as a special procedure of this type. In the diophantine approach, it is uncertain 
how much developments to improve accuracy have in the past been expended 
against boundary errors, more easily removed here, and how much against the 
interior integration. The freedom to adjust more effectively for just the second 
source of error might improve such methods considerably. It is considered there 
are two main sources of error: the boundary corrections, here removed; and the 
effects of integrating bulges in the interior by finite points. The result for the 
narrow gaussian curve (Table 5) gives a measure of the errors due to a bulge of 
width 0.2 and could be scaled to give a rough estimate for any suspected interior 
bulge effect. 

It may be noted that such methods, especially Too, can be used to integrate 
functions which have integrable singularities, e.g. 

X - ~  -k X - ~  q- ( l - - x )  - ~  . 

Simple example of such cases are sometimes cited as being appropriate to Gauss 
point quadrature. But this might necessitate elaborate calculation of points for 
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each integral. In other simpler cases Gauss point quadrature gives high accuracy 
but requires rather stringent knowledge that the integrand is very similar to a 
moderate finite expansion in terms of a particular type of function. This and 
other aspects practically exclude any general application of Gauss point 
procedures to more than one or two dimensions. 

The above tables provide a means of estimating the errors for given points 
per dimension in many dimensional integrals after the boundary reduction 
transformations have been applied. In the simplest application the latter provide 
a very effective and simple way of reducing the integration to the evaluation of 
( n - l )  equally spaced points per dimension. It is to be hoped that further 
efficiency will be obtained by use of these transformations with other improved 
point systems. 
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